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	Abstract. The aim of this study is to develop a computer vision–based model using YOLOv5s for the autonomous identification of safe UAV landing zones from onboard camera images. Several model modifications were proposed and compared, and evaluated on urban scenes with variations in lighting, noise, and geometric distortions. In the best case, improvements in correct detections, precision, and recall were achieved: Precision = 0,938, Recall = 0,8231, F1 = 0,8768.
Keywords: object detection, image processing, unmanned aerial vehicles, UAV, autonomous landing, autonomous delivery.


Підхід на основі комп’ютерного зору для визначення зони посадки БПЛА
Новиков Данило Михайлович, Онищенко Вікторія Валеріївна
ФІОТ
КПІ ім. Ігоря Сікорського
Київ, Україна
danilnovikov759@gmail.com, v.onyshchenko@kpi.ua


Анотація. Метою дослідження є розробка моделі комп’ютерного зору на базі YOLOv5s для автономного визначення безпечної зони посадки БПЛА за зображеннями з бортової камери. Запропоновано та порівняно кілька модифікацій моделі, які були апробовані на урбаністичних кадрах із варіаціями освітлення, шуму та геометричних спотворень. У найкращому випадку досягнуто покращення кількості коректних розпізнавань, точності та повноти, а саме: Precision = 0,938, Recall = 0,8231, F1 = 0,8768.
Ключові слова: виявлення об'єктів, обробка зображень, безпілотні літальні апарати, БПЛА, автономна посадка, автономна доставка.
ВСТУП
У сучасному світі логістика стає дедалі складнішою через постійне зростання обсягів замовлень, які потребують швидкої та надійної доставки. Інтеграція безпілотних літальних апаратів (БПЛА) у процес останньої милі дозволяє звільнити людські ресурси для виконання складніших завдань та покращити досвід кінцевого споживача.
Система автономної доставки вантажів за допомогою БПЛА умовно складається з наступних модулів:
· Навігація – планування маршруту польоту й руху;
· Визначення кінцевої точки доставки;
· Механізм фіксації та вивільнення вантажу.
Ця робота зосереджена на модулі визначення безпечної зони посадки, яка фактично є кінцевою точкою в ланцюгу доставки. Наразі не існує універсальної системи, здатної автоматично визначати зону посадки БПЛА у типовому міському середовищі – з урахуванням приватних будинків, офісних будівель та багатоповерхових житлових комплексів.
Мета дослідження – розробка моделі на основі комп’ютерного зору для виявлення безпечних майданчиків на відкритих ділянках приватних або громадських просторів із достатнім вільним простором. Для цього у якості ключового тренувального сигналу обрано спеціалізовані маркери, що чітко визначають межі зони посадки.
Слід також зазначити, що більшість існуючих рішень покладаються на GPS‑сигнал для уточнення місцезнаходження БПЛА. Однак GPS може бути неточним (типова похибка GPS ~2–5 м) або зовсім недоступним. Використання ж алгоритмів комп’ютерного зору забезпечує незалежність від супутникового зв’язку та підвищує надійність системи в критичних умовах, мінімізуючи ризики під час доставки.
АНАЛІЗ ОСТАННІХ ДОСЛІДЖЕНЬ I ПУБЛІКАЦІЙ
Аналіз сучасної літератури свідчить про активний розвиток теми автономної доставки за допомогою БПЛА, водночас виявляючи низку обмежень існуючих підходів. У досліджені [1] пропонується алгоритм  пошуку безпечної зони посадки, що ґрунтується на виявленні людини як потенційного отримувача посилки за допомогою методів комп’ютерного зору. Такий підхід корисний, коли отримувач присутній на місці, але непридатний для випадків безконтактної доставки на приватну територію, де людина може бути відсутня.[image: ]


Автори дослідження [2] пропонують комплексний підхід до виявлення безпечної зони посадки без використання маркерів для екстреної посадки на непідготовленій ділянці. Проте середній час обробки одного кадру (600×400 пікселів) становить близько 2,5 с, що ускладнює його застосування в режимі реального часу, де швидкодія критично важлива.
Серед комерційних прикладів слід відзначити Amazon Prime Drone Delivery [3]. Незважаючи на значний прорив у сфері автономної безпілотної доставки, система має обмеження. Зокрема, посадкова зона повинна бути попередньо визначена користувачем на основі супутникового знімка його двору, що створює залежність від GPS-сигналу. Додатково, БПЛА не приземляється, а скидає посилку з висоти 3,5 м, обмежуючи тип вантажів і знижуючи універсальність рішення.
Зазначені приклади підкреслюють актуальність розробки нового підходу, орієнтованого на підвищення продуктивності та автономності (незалежність від системи GPS) при збереженні високої точності.
ВИКЛАД ОСНОВНОГО МАТЕРІАЛУ
В якості базової моделі обрано YOLOv5s [4] як сучасну модель комп’ютерного зору що поєднує гарну швидкість детекції та точність з відносно невеликою обчислювальною складністю та простотою налаштування. Для навчання використано набір тренувальних даних міського середовища з платформи Roboflow [5], у якому частина зображень містить спеціалізовані маркери, що позначають безпечну зону посадки і які в контексті дослідження виступають ціллю розпізнавання. Під час першого раунду тренування з використанням стандартних гіперпараметрів отримано контрольні результати: Precision (точність) = 0,781; Recall (повнота) = 0,889; mAP@0,5 = 0,851; mAP@0,5:0,95 = 0,538. Ці показники підтвердили ефективність базової конфігурації на ідеалізованих урбаністичних зображеннях.
	Для підвищення стійкості до варіацій реального середовища розширено пайплайн обробки даних за допомогою бібліотеки Albumentations. Із ймовірністю 60% обирається та застосовується до зображення один із трьох методів контрастної/кольорової корекції: CLAHE (адаптивне вирівнювання гістограми з обмеженням контрасту), ToGray (перетворення в чорно-біле) або Equalize (еквалізація гістограми зображення). Тренування модифікованої моделі дало наступні результати: Precision = 0,884; Recall = 0,847; mAP@0,5 = 0,949; mAP@0,5:0,95 = 0,463. Результат навчання модифікованої версії демонструє помітне зростання точності й mAP@0,5 за рахунок незначного зниження повноти та mAP@0,5:0,95.
	Щоб оцінити адаптивність обох моделей до реальних умов, проведено апробацію на тестовому наборі тренувальних даних [6], що включає: стандартні кадри (a), зображення зі зміненою яскравістю (±50%) (b, c), з Gaussian-розмиттям (d), шумом (e), чорно-білі (f) версії та повернуті на ±45° (g). Приклад тестового зображення і його модифікацій наведено на рис. 1:
Рис. 1. Приклад тестового набору тренувальних даних
Оскільки метою цієї роботи є вибір кінцевої точки посадки за найвищою ймовірністю детекції маркеру, після розпізнавання кінцевою точкою вважається область з найбільшою впевненістю. Для порівняння базової й модифікованої версій моделей проведено три фази тестування з різними мінімальними порогами впевненості: без порогу, з порогом 50% і з порогом 75%. Для розрахунку ключових метрик використано:
· True Positives (TP) – кількість коректно виявлених маркерів;
· False Positives (FP) – сума випадків дублікатів детекції одного маркеру та некоректних передбачень;
· False Negatives (FN) – кількість маркерів, що не були виявлені.
	Метрики Precision (1), Recall (2) і F1 (3), гармонійне середнє точності та повноти, обчислювалися за стандартними формулами.
	Precision =	
	Recall =	2
	F1 =	3
	Результати апробації наведено в табл. 1. Базову модель позначено як default, модифіковану – modified, через тире вказано мінімальний поріг впевненості, якщо застосовано. Модифікована модель у порівнянні з базовою демонструє:
· без порогу конфіденційності – зростання кількості коректних детекцій на 43,5% (99 проти 69 TP);
· при порозі 50% – в 13,8 раз більше коректних виявлень (83 проти 6 TP);
· при порозі 75% – базова модель не виявила жодного маркеру, тоді як модифікована – 7 зон.
Таблиця 1
Результат апробації базової (default) та модифікованої (modified) моделей
	Назва моделі
	TP
	FP
	FN
	P
	R
	F1

	default
	69
	5
	78
	0,9324
	0,4694
	0,6244

	modified
	99
	23
	48
	0,8115
	0,6735
	0,7361

	default–50
	6
	0
	141
	1
	0,408
	0,0784

	modified–50
	83
	3
	64
	0,9651
	0,5646
	0,7124

	default–75
	0
	0
	147
	0
	0
	0

	modified–75
	7
	0
	140
	1
	0,0476
	0,0909


	Отримані результати свідчать, що запропонована стратегія аугментації значно підвищує продуктивність моделі в умовах варіативності освітлення, шумів та геометричних спотворень, зберігаючи прийнятний рівень швидкодії для застосування в реальному часі.
	Хоча модифікована модель показала значне покращення порівняно з базовою, для підвищення її здатності до узагальнення та покриття нестандартних ситуацій було проведено раунд донавчання (fine-tuning) із оптимізованими гіперпараметрами, використовуючи ваги з першого етапу. Результати наведено в табл. 2. Було опрацьовано три конфігурації:
· default* – базова модель, донавчена з початкових ваг (з першого раунду) без змін гіперпараметрів (контрольна версія);
· ft-default – базова модель, донавчена з новими підібраними гіперпараметрами;
· ft-modified – модифікована модель із розширеною аугментацією, донавчена з новими гіперпараметрами.
Таблиця 2
Показники моделей після донавчання
	Назва моделі
	Precision
	Recall
	mAP@0,5
	mAP@0,5:0,95

	default*
	1
	0,889
	0,975
	0,588

	ft-default
	0,852
	1
	0,995
	0,635

	ft-modified
	1
	0,96
	0,995
	0,667


	Також проведено апробацію отриманих моделей за різними порогами впевненості на тестовому наборі даних. Результати апробації наведені в табл. 3:
Таблиця 3
Результат апробації після донавчання
	Назва моделі
	TP
	FP
	FN
	P
	R
	F1

	default*
	100
	15
	47
	0,8696
	0,6803
	0,7634

	ft-default
	133
	400
	14
	0,2495
	0,9048
	0,3911

	ft-modified
	132
	263
	15
	0,3342
	0,898
	0,4871

	default*–50
	65
	4
	82
	0,942
	0,4422
	0,6019

	ft-default–50
	124
	87
	23
	0,5877
	0,8435
	0,6927

	ft-modified–50
	125
	60
	22
	0,6757
	0,8503
	0,753

	default*–75
	2
	0
	145
	1
	0,0136
	0,0268

	ft-default–75
	119
	13
	28
	0,9015
	0,8095
	0,853

	ft-modified–75
	121
	8
	26
	0,938
	0,8231
	0,8768


	За результатами використання гіперпараметрів можна зробити наступні висновки:
· Навчання з оптимізованими гіперпараметрами (ft-default) підвищує кількість коректних розпізнань (TP), але погіршує precision через збільшення кількості помилкових спрацьовувань (FP) за умови низького мінімального порогу впевненості;
· Контрольна версія (default*) демонструє збалансованішу роботу у порівняні зі стандартною моделлю (default), проте поступається порівняно з модифікованою (modified) та fine-tuned (ft-*) моделями;
· Модифікована модель з оптимізованими гіперпараметрами (ft-modified) поєднує високий precision і recall, досягаючи найкращого mAP@0,5:0,95 та F1 серед усіх конфігурацій;
· Зіставлення фаз із порогами 50% і 75% підтверджує здатність ft-моделей ефективно відкидати хибні спрацьовування без втрати критичного числа коректних детекцій.
ВИСНОВКИ
У цій роботі запропоновано алгоритм, який використовує лише зображення з бортової камери БПЛА для визначення безпечної зони посадки за допомогою спеціалізованих маркерів. Модель YOLOv5s була модифікована для детекції таких маркерів, проведено її навчання та тестування на різних тестових наборах даних. Основні результати:
· Базова модель без аугментації практично не виявляє маркери при встановленому наближеному до реальних умов порозі мінімальної впевненості;
· Аугментація даних на рівні моделі значно підвищує стійкість моделі до змін освітлення, шуму та геометричних спотворень, зберігаючи прийнятний час виконання;
· Підбір оптимальних гіперпараметрів покращує показники моделі порівняно зі стандартним навчанням;
· Поєднання аугментації з оптимальними гіперпараметрами забезпечує збалансоване співвідношення між точністю та повнотою;
· За мінімального порога впевненості на рівні 75% ft-modified демонструє найкращу комбінацію показників: P = 0,938; R = 0,8231 та F1 = 0,8768.
Для практичного застосування обрано модель ft-modified як квінтесенцію найкращих метрик та апробації. Запропонований підхід не вимагає використання GPS‑сигналу, що робить його придатним для умов з відсутнім або заглушеним супутниковим зв’язком.
Застосування запропонованої моделі в поєднанні з алгоритмами навігації створює передумови для створення автономної інтелектуальної системи доставки останньої милі за допомогою БПЛА, що може значно підвищити ефективність і надійність процесу доставки вантажів.
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