International Conference on Industrial Engineering. 2015

Task allocation in hierarchical IoT systems based on osmotic computing
	Nahaiko Dmytro, Rolik Oleksandr
Igor Sikorsky Kyiv Polytechnic Institute
Kyiv, Ukraine
d.nahaiko@kpi.ua, o.rolik@kpi.ua

	Abstract. A task allocation method for IoT systems with a three-tier architecture – cloud, fog, and edge computing – is proposed. The method is based on the concept of osmotic computing and determines the optimal execution environment for tasks by considering their characteristics and requirements and the current state of computing resources. A hierarchical control model is developed, in which each level includes computing nodes and a management system responsible for task allocation, resource state monitoring, and decision-making regarding the placement, migration, and removal of microelements.
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Анотація. Запропоновано метод розподілу задач в IoT-системах, які мають трирівневу архітектуру – хмарних, туманних, крайових обчислень. Метод побудовано на концепції осмотичних обчислень, а для визначення оптимального середовища виконання задач він враховує як характеристики та вимоги самих задач, так і стан обчислювальних ресурсів. Розроблено ієрархічну модель керування, коли кожен рівень містить обчислювальні вузли та систему управління, що здійснює розподіл задач, моніторинг стану ресурсів та прийняття рішень щодо розміщення, міграції та видалення мікроелементів. 
Ключові слова: інформаційні системи та технології, інтернет речей (IoT), хмарні обчислення, туманні обчислення, крайові обчислення, осмотичні обчислення, розподіл задач.
ВСТУП
Інтернет речей (IoT) застосовується в різних сферах людської діяльності, надаючи інструменти для автоматизації, моніторингу й керування різноманітними процесами в реальному часі.
Активний розвиток та впровадження IoT-технологій призвели до стрімкого зростання кількості пристроїв, підключених до IoT: лише у 2024 р. їхній парк перевищив 18 млрд, що на 13% більше ніж у 2023 р., а корпоративні витрати на IoT-інфраструктуру сягнули 298 млрд дол. США​​ [1]. Ця тенденція супроводжується збільшенням обсягів даних, які генеруються IoT-пристроями, та зростанням обчислювального навантаження на ІТ-інфраструктуру, що ускладнює підтримання гарантованого рівня якості обслуговування (QoS). Окрім цього, висока гетерогенність та динамічність, якими характеризуються IoT-середовища [2], вимагають відповідного рівня адаптивності IoT-системи до змін в реальному часі.
Використання туманних та крайових обчислень частково вирішує зазначені проблеми, розширяючи обчислювальні потужності системи до краю мережі, тим самим наближаючи процеси збору, аналізу та оброблення даних ближче до джерела цих даних, що сприяє мінімізації затримок передавання даних, зменшує загальний час виконання задач та знижує навантаження у хмарному середовищі [3].
Однак застосування туманних та крайових технологій створюють нові проблеми, які пов’язані з нерівномірним навантаженням, обмеженими ресурсами на периферії та потребою реагувати на динамічні підключення або відключення та вихід з ладу обчислювальних вузлів.
Для вирішення цих проблем в [4] запропоновано концепцію осмотичних обчислень, яка запозичена з хімічного процесу осмосу і полягає в автономному та динамічному управлінні обчислювальними ресурсами. Завдяки безперервному вертикальному балансуванню навантаження між хмарним, туманним та крайовим середовищами, осмотичні обчислення забезпечують адаптацію системи до змін в реальному часі, підтримуючи рівномірний розподіл навантаження між різними обчислювальними середовищами [4, 5].
Однак, з урахуванням концепції осмотичних обчислень, актуальним завданням залишається управління розподілом задач в умовах невизначеності, динамічності та гетерогенності IoT-середовища, забезпечуючи при цьому надання послуг з відповідним рівнем QoS.
ОСОБЛИВОСТІ ЗАГАЛЬНОЇ АРХІТЕКТУРИ IOT-СИСТЕМ
В роботі розглядається трирівнева архітектура розподілених IoT-систем з поділом на хмарне, туманне та крайове середовища, в якій управління задачами та ресурсами базується на концепції осмотичних обчислень (рис. 1).
Перший рівень – Edge, який знаходиться найнижче в ієрархічній структурі, є середовищем крайових обчислень. Цей рівень розташований найближче до джерел даних, якими є кінцеві IoT-пристрої, частина з яких мають власні обчислювальні потужності, що дозволяє їм виконувати прості задачі з низькою затримкою.
Другий рівень – середовище туманних обчислень (Fog), містить проміжні обчислювальні ресурси на рівні мікро- або регіональних дата-центрів. Завдяки розширеним обчислювальним можливостям Fog-рівень здатний обробляти більші об’єми даних та виконувати складніші обчислення порівняно з Edge-рівнем. Fog-рівень може одночасно обслуговувати декілька доменів Edge-рівня.
Третій, найвищий рівень – це хмарне середовище (Cloud), яке розташоване найдалі від кінцевих пристроїв та побудоване на основі центрів оброблення даних з великими обчислювальними потужностями. Cloud-рівень забезпечує аналіз, обробку та збереження великих масивів даних з високим рівнем відмовостійкості. Cloud-рівень може одночасно обслуговувати декілька доменів Fog-рівня.
Взаємодія між обчислювальними середовищами реалізується як ієрархічно організований обмін даними між рівнями IoT-системи.
Ідея осмотичних обчислень запозичена з хімічного процесу осмосу, де розчинник переходить із ділянки з нижчою концентрацією розчиненої речовини у ділянку з вищою концентрацією розчиненої речовини через напівпроникну мембрану, завдяки чому вирівнюється концентрація по обидва боки мембрани. В осмотичних обчисленнях в ролі розчинника виступають мікроелементи (MicroElements, MELs), які можуть мігрувати між різними середовищами (хмара, туман, край) через програмно-визначену мембрану (Software-Defined Membrane, SDMem).
MELs поділяються на мікросервіси (MicroServices, MS), які надають функціональні можливості, та мікродані (MicroData, MD), які передаються між компонентами IoT-системи.
Програмно-визначена мембрана регулює переміщення MELs відповідно до різних політик управління, враховуючи доступність обчислювальних ресурсів, вимоги до якості обслуговування та поточний стан системи [5, 6].
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Рис. 1. Загальна структура трирівневої IoT-системи на основі осмотичних обчислень
В архітектурі IoT-систем на рис.1 реалізована трирівнева ієрархічна модель керування. Кожен рівень містить обчислювальні вузли та систему управління, яка на основі аналізу даних моніторингу стану ресурсів приймає рішення щодо розміщення, міграції та видалення MELs й виконує розподіл задач (рис. 2).
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Рис. 2. Загальна модель розподілу задач та управління ресурсами в IoT-системі
На обчислювальному вузлі може бути розгорнуто один або декілька MELs залежно від наявних потужностей, а кожен MEL може виконувати одну або декілька задач.
Система управління нижче розташованого рівня підпорядковується вищій за ієрархією системі управління. Так Edge-система управління обслуговує обчислювальні вузли, що взаємодіють з кінцевими пристроями IoT-систем. Fog-система управління координує edge-домени – групи обчислювальних вузлів, що підпорядковуються одній системі управління, – та обчислювальні вузли свого домену. Центральна система управління, яка розташована на хмарному рівні, має інформацію про загальний стан IoT системи, забезпечуючи узгоджену роботу всіх рівнів.
Розглянута модель керування реалізує комбінацію централізованого та децентралізованого підходів до управління. Глобальне управління та прийняття рішень здійснюється  центральною системою управління. В той  же час децентралізоване управління здійснюється системами управління відповідних рівнів, які приймають локальні рішення і здійснюють управління в межах свого домену. Поєднання цих підходів дозволяє підвищити відмовостійкість, масштабованість та адаптивність системи.
МЕТОД РОЗПОДІЛУ ЗАДАЧ В IОT-СИСТЕМІ













У розглянутій трирівневій архітектурі розподіленої IoT-системи на основі осмотичних обчислень фактичне середовище виконання задач побудовано на основі MEL. MEL розгортається на обчислювальному вузлі  з ресурсами , де  – множина обчислювальних вузлів з сумарними ресурсами  на рівні , , , де – кількість доступних вузлів на рівні . При цьому обчислювальні вузли в межах одного рівня можуть мати різні ресурси ,  для деяких , де .

У запропонованому методі розподіл задач  здійснюється за алгоритмом 1.

	Алгоритм 1. Розподіл задачі в ієрархічній IoT-системі
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Реєстрація задачі  відбувається в локальній системі управління того рівня , на якому вона була ініційована. Кожна задача описується вектором параметрів , де – значення -го параметра задачі . До таких параметрів можуть належати: пріоритет задачі, вимоги до затримок, обчислювальна складність тощо. Кількість та типи параметрів можуть відрізнятися в залежності від вимог та потреб конкретної IoT-системи.








Після ініціації задачі здійснюється аналіз придатності поточного рівня  для виконання задачі : . Якщо поточний рівень задовольняє вимоги виконання, система управління рівня переходить до перевірки наявності необхідних обчислювальних ресурсів у такий спосіб: для кожного обчислювального вузла  з ресурсами  здійснюється оцінка за деякою функцією , що характеризує можливість розміщення задачі  на вузлі .

У випадку достатньої кількості ресурсів задача призначається відповідному MEL для виконання. Якщо ресурсів недостатньо, система управління рівня  здійснює аналіз доцільності вивільнення ресурсів, оцінюючи пріоритети поточних задач та потенційні втрати від їх переміщення. При позитивному результаті цього аналізу виконується вивільнення ресурсів, після чого знову перевіряється наявність необхідних ресурсів.



Якщо поточний рівень  не відповідає вимогам або неможливо вивільнити достатньо ресурсів, система управління рівня перевіряє чи залишилися інші нерозглянуті рівні в ієрархії , куди можна розподілити задачу. При наявності альтернативних варіантів задача перенаправляється на вищий або нижчий рівень в залежності від параметрів  самої задачі, після чого процес аналізу повторюється. Якщо доступних рівнів не залишилось, задача поміщається в чергу очікування або відхиляється в залежності від політик, які реалізовано у системі управління.
Розглянутий метод розподілу задач спрямований зменшити загальний час виконання задач за рахунок їх раціонального розміщення, обираючи середовище для виконання з урахуванням параметрів задач та поточного навантаження. 
ВИСНОВКИ
В роботі розроблено загальну модель розподілу задач та управління ресурсами в IoT-системах на основі осмотичних обчислень. Розглянута трирівнева архітектура розподіленої IoT-системи спрямована забезпечити ефективне використання обчислювальних ресурсів крайового, туманного та хмарного рівнів, регулювати розподіл навантаження між ними та підвищити адаптивність системи до динамічних змін середовища. Запропоновано метод розподілу задач, який враховує як характеристики та вимоги самих задач, так і стан обчислювальних ресурсів для визначення раціонального середовища виконання.
Подальші кроки досліджень будуть спрямовані на розробку методів управління MELs для ефективного використання ресурсів, балансування навантаження та зменшення часу виконання задач, а також дослідження застосування апарату нечіткої логіки з метою забезпечити адаптивність IoT-системи в умовах динамічних змін та невизначеності середовища.
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