International Conference on Industrial Engineering. 2015

Task allocation in hierarchical IoT systems based on osmotic computing
	Nahaiko Dmytro, Rolik Oleksandr
Igor Sikorsky Kyiv Polytechnic Institute
Kyiv, Ukraine
d.nahaiko@kpi.ua, o.rolik@kpi.ua

	Abstract. A task allocation method for IoT systems with a three-tier architecture – cloud, fog, and edge computing – is proposed. The method is based on the concept of osmotic computing and determines the optimal execution environment for tasks by considering their characteristics and requirements and the current state of computing resources. A hierarchical control model is developed, in which each level includes computing nodes and a management system responsible for task allocation, resource state monitoring, and decision-making regarding the placement, migration, and removal of microelements.
Keywords: information systems and technologies, internet of things (IoT), cloud computing, fog computing, edge computing, osmotic computing, task allocation.





Розподіл задач в іерархічних IoT-системах на основі осмотичних обчислень
Нагайко Дмитро, Ролік Олександр
КПI iм. Iгоря Сiкорського
м. Київ, Україна
d.nahaiko@kpi.ua, o.rolik@kpi.ua


Анотація. Запропоновано метод розподілу задач в IoT-системах, які мають трирівневу архітектуру – хмарних, туманних, крайових обчислень. Метод побудовано на концепції осмотичних обчислень, а для визначення оптимального середовища виконання задач він враховує як характеристики та вимоги самих задач, так і стан обчислювальних ресурсів. Розроблено ієрархічну модель керування, коли кожен рівень містить обчислювальні вузли та систему управління, що здійснює розподіл задач, моніторинг стану ресурсів та прийняття рішень щодо розміщення, міграції та видалення мікроелементів. 
Ключові слова: інформаційні системи та технології, інтернет речей (IoT), хмарні обчислення, туманні обчислення, крайові обчислення, осмотичні обчислення, розподіл задач.
ВСТУП
Інтернет речей (IoT) застосовується в різних сферах людської діяльності, надаючи інструменти для автоматизації, моніторингу й керування різноманітними процесами в реальному часі.
Активний розвиток та впровадження IoT-технологій призвели до стрімкого зростання кількості пристроїв, підключених до IoT: лише у 2024 р. їхній парк перевищив 18 млрд, що на 13% більше ніж у 2023 р., а корпоративні витрати на IoT-інфраструктуру сягнули 298 млрд дол. США​​ [1]. Ця тенденція супроводжується збільшенням обсягів даних, які генеруються IoT-пристроями, та зростанням обчислювального навантаження на ІТ-інфраструктуру, що ускладнює підтримання гарантованого рівня якості обслуговування (QoS). Окрім цього, висока гетерогенність та динамічність, якими характеризуються IoT-середовища [2], вимагають відповідного рівня адаптивності IoT-системи до змін в реальному часі.
Використання туманних та крайових обчислень частково вирішує зазначені проблеми, розширяючи обчислювальні потужності системи до краю мережі, тим самим наближаючи процеси збору, аналізу та оброблення даних ближче до джерела цих даних, що сприяє мінімізації затримок передавання даних, зменшує загальний час виконання задач та знижує навантаження у хмарному середовищі [3].
Однак застосування туманних та крайових технологій створюють нові проблеми, які пов’язані з нерівномірним навантаженням, обмеженими ресурсами на периферії та потребою реагувати на динамічні підключення або відключення та вихід з ладу обчислювальних вузлів.
Для вирішення цих проблем в [4] запропоновано концепцію осмотичних обчислень, яка запозичена з хімічного процесу осмосу і полягає в автономному та динамічному управлінні обчислювальними ресурсами. Завдяки безперервному вертикальному балансуванню навантаження між хмарним, туманним та крайовим середовищами, осмотичні обчислення забезпечують адаптацію системи до змін в реальному часі, підтримуючи рівномірний розподіл навантаження між різними обчислювальними середовищами [4, 5].
Однак, з урахуванням концепції осмотичних обчислень, актуальним завданням залишається управління розподілом задач в умовах невизначеності, динамічності та гетерогенності IoT-середовища, забезпечуючи при цьому надання послуг з відповідним рівнем QoS.
ОСОБЛИВОСТІ ЗАГАЛЬНОЇ АРХІТЕКТУРИ IOT-СИСТЕМ
В роботі розглядається трирівнева архітектура розподілених IoT-систем з поділом на хмарне, туманне та крайове середовища, в якій управління задачами та ресурсами базується на концепції осмотичних обчислень (рис. 1).
Перший рівень – Edge, який знаходиться найнижче в ієрархічній структурі, є середовищем крайових обчислень. Цей рівень розташований найближче до джерел даних, якими є кінцеві IoT-пристрої, частина з яких мають власні обчислювальні потужності, що дозволяє їм виконувати прості задачі з низькою затримкою.
Другий рівень – середовище туманних обчислень (Fog), містить проміжні обчислювальні ресурси на рівні мікро- або регіональних дата-центрів. Завдяки розширеним обчислювальним можливостям Fog-рівень здатний обробляти більші об’єми даних та виконувати складніші обчислення порівняно з Edge-рівнем. Fog-рівень може одночасно обслуговувати декілька доменів Edge-рівня.
Третій, найвищий рівень – це хмарне середовище (Cloud), яке розташоване найдалі від кінцевих пристроїв та побудоване на основі центрів оброблення даних з великими обчислювальними потужностями. Cloud-рівень забезпечує аналіз, обробку та збереження великих масивів даних з високим рівнем відмовостійкості. Cloud-рівень може одночасно обслуговувати декілька доменів Fog-рівня.
Взаємодія між обчислювальними середовищами реалізується як ієрархічно організований обмін даними між рівнями IoT-системи.
Ідея осмотичних обчислень запозичена з хімічного процесу осмосу, де розчинник переходить із ділянки з нижчою концентрацією розчиненої речовини у ділянку з вищою концентрацією розчиненої речовини через напівпроникну мембрану, завдяки чому вирівнюється концентрація по обидва боки мембрани. В осмотичних обчисленнях в ролі розчинника виступають мікроелементи (MicroElements, MELs), які можуть мігрувати між різними середовищами (хмара, туман, край) через програмно-визначену мембрану (Software-Defined Membrane, SDMem).
MELs поділяються на мікросервіси (MicroServices, MS), які надають функціональні можливості, та мікродані (MicroData, MD), які передаються між компонентами IoT-системи.
Програмно-визначена мембрана регулює переміщення MELs відповідно до різних політик управління, враховуючи доступність обчислювальних ресурсів, вимоги до якості обслуговування та поточний стан системи [5, 6].

[image: A diagram of a cloud computing network

AI-generated content may be incorrect.]
Рис. 1. Загальна структура трирівневої IoT-системи на основі осмотичних обчислень
В архітектурі IoT-систем на рис.1 реалізована трирівнева ієрархічна модель керування. Кожен рівень містить обчислювальні вузли та систему управління, яка на основі аналізу даних моніторингу стану ресурсів приймає рішення щодо розміщення, міграції та видалення MELs й виконує розподіл задач (рис. 2).

[image: A diagram of a cloud computing process

AI-generated content may be incorrect.]
Рис. 2. Загальна модель розподілу задач та управління ресурсами в IoT-системі
На обчислювальному вузлі може бути розгорнуто один або декілька MELs залежно від наявних потужностей, а кожен MEL може виконувати одну або декілька задач.
Система управління нижче розташованого рівня підпорядковується вищій за ієрархією системі управління. Так Edge-система управління обслуговує обчислювальні вузли, що взаємодіють з кінцевими пристроями IoT-систем. Fog-система управління координує edge-домени – групи обчислювальних вузлів, що підпорядковуються одній системі управління, – та обчислювальні вузли свого домену. Центральна система управління, яка розташована на хмарному рівні, має інформацію про загальний стан IoT системи, забезпечуючи узгоджену роботу всіх рівнів.
Розглянута модель керування реалізує комбінацію централізованого та децентралізованого підходів до управління. Глобальне управління та прийняття рішень здійснюється  центральною системою управління. В той  же час децентралізоване управління здійснюється системами управління відповідних рівнів, які приймають локальні рішення і здійснюють управління в межах свого домену. Поєднання цих підходів дозволяє підвищити відмовостійкість, масштабованість та адаптивність системи.
МЕТОД РОЗПОДІЛУ ЗАДАЧ В IОT-СИСТЕМІ













У розглянутій трирівневій архітектурі розподіленої IoT-системи на основі осмотичних обчислень фактичне середовище виконання задач побудовано на основі MEL. MEL розгортається на обчислювальному вузлі  з ресурсами , де  – множина обчислювальних вузлів з сумарними ресурсами  на рівні , , , де – кількість доступних вузлів на рівні . При цьому обчислювальні вузли в межах одного рівня можуть мати різні ресурси ,  для деяких , де .

У запропонованому методі розподіл задач  здійснюється за алгоритмом 1.

	Алгоритм 1. Розподіл задачі в ієрархічній IoT-системі

	



Input: Task , set of nodes with resources , 

	
Output: Assignment of task  to a node or queue/reject the task

	1
	

level where  was initialized

	2
	
while do

	3
	
	

if isLevelSuitableForTask(,) then

	4
	
	
	

for each  from  do

	5
	
	
	
	

if isNodeAvailableForTask(,) then

	6
	
	
	
	
	

assign  to  node

	7
	
	
	
	
	return

	8
	
	
	
	end if

	9
	
	
	end for

	10
	
	
	

for each  from  do

	11
	
	
	
	

if canReleaseResourcesForTask(,) then

	12
	
	
	
	
	
release resources on  node

	13
	
	
	
	
	

if isNodeAvailableForTask(,) then

	14
	
	
	
	
	
	

assign  to  node

	15
	
	
	
	
	
	return

	16
	
	
	
	
	end if

	17
	
	
	
	end if

	18
	
	
	end for

	19
	
	end if

	20
	
	


	21
	end while

	22
	
queue or reject 








Реєстрація задачі  відбувається в локальній системі управління того рівня , на якому вона була ініційована. Кожна задача описується вектором параметрів , де – значення -го параметра задачі . До таких параметрів можуть належати: пріоритет задачі, вимоги до затримок, обчислювальна складність тощо. Кількість та типи параметрів можуть відрізнятися в залежності від вимог та потреб конкретної IoT-системи.








Після ініціації задачі здійснюється аналіз придатності поточного рівня  для виконання задачі : . Якщо поточний рівень задовольняє вимоги виконання, система управління рівня переходить до перевірки наявності необхідних обчислювальних ресурсів у такий спосіб: для кожного обчислювального вузла  з ресурсами  здійснюється оцінка за деякою функцією , що характеризує можливість розміщення задачі  на вузлі .

У випадку достатньої кількості ресурсів задача призначається відповідному MEL для виконання. Якщо ресурсів недостатньо, система управління рівня  здійснює аналіз доцільності вивільнення ресурсів, оцінюючи пріоритети поточних задач та потенційні втрати від їх переміщення. При позитивному результаті цього аналізу виконується вивільнення ресурсів, після чого знову перевіряється наявність необхідних ресурсів.



Якщо поточний рівень  не відповідає вимогам або неможливо вивільнити достатньо ресурсів, система управління рівня перевіряє чи залишилися інші нерозглянуті рівні в ієрархії , куди можна розподілити задачу. При наявності альтернативних варіантів задача перенаправляється на вищий або нижчий рівень в залежності від параметрів  самої задачі, після чого процес аналізу повторюється. Якщо доступних рівнів не залишилось, задача поміщається в чергу очікування або відхиляється в залежності від політик, які реалізовано у системі управління.
Розглянутий метод розподілу задач спрямований зменшити загальний час виконання задач за рахунок їх раціонального розміщення, обираючи середовище для виконання з урахуванням параметрів задач та поточного навантаження. 
ВИСНОВКИ
В роботі розроблено загальну модель розподілу задач та управління ресурсами в IoT-системах на основі осмотичних обчислень. Розглянута трирівнева архітектура розподіленої IoT-системи спрямована забезпечити ефективне використання обчислювальних ресурсів крайового, туманного та хмарного рівнів, регулювати розподіл навантаження між ними та підвищити адаптивність системи до динамічних змін середовища. Запропоновано метод розподілу задач, який враховує як характеристики та вимоги самих задач, так і стан обчислювальних ресурсів для визначення раціонального середовища виконання.
Подальші кроки досліджень будуть спрямовані на розробку методів управління MELs для ефективного використання ресурсів, балансування навантаження та зменшення часу виконання задач, а також дослідження застосування апарату нечіткої логіки з метою забезпечити адаптивність IoT-системи в умовах динамічних змін та невизначеності середовища.
ЛІТЕРАТУРА
1. Cole C. IoT 2024 in review: The 10 most relevant IoT developments of the year. IoT Analytics. 15.01.2025. URL: https://iot-analytics.com/iot-2024-review (access date: 27.04.2025).
2. Self-adaptive architectures in IoT systems: a systematic literature review / I. Alfonso et al. Journal of Internet Services and Applications. 2021. Vol. 12. P. 1–28. URL: https://doi.org/10.1186/s13174-021-00145-8.
3. Rolik O., Telenyk S., Zharikov E. IoT and Cloud Computing: The Architecture of Microcloud-Based IoT Infrastructure Management System. Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications. Hershey, PA: IGI Global, 2020. С. 1157–1185. URL: https://doi.org/10.4018/978-1-5225-9866-4.ch052.
4. Osmotic Computing: A New Paradigm for Edge/Cloud Integration. IEEE Cloud Computing. 2016. Vol. 3, iss. 7. P. 76–83. URL: https://doi.org/10.1109/MCC.2016.124.
5. A Systematic Review on Osmotic Computing / B. Neha et al. ACM Transactions on Internet of Things. 2022. Vol. 3, iss. 2. P. 1–30. URL: https://doi.org/10.1145/3488247.
6. Software Defined Membrane: Policy-Driven Edge and Internet of Things Security / M. Villari et al. IEEE Cloud Computing. 2017. Vol. 4, iss. 4. P. 92–99. URL: https://doi.org/10.1109/MCC.2017.3791014.




	Международная научно-техническая конференция “Пром-Инжиниринг”. 2015
	3 



image3.wmf
iL

N

Î

N


oleObject53.bin

oleObject54.bin

image41.wmf
i

N


oleObject55.bin

image42.wmf
L


oleObject56.bin

image43.wmf
L


oleObject57.bin

image44.wmf
'

\{}

LL

Î

L


oleObject58.bin

oleObject1.bin

image45.wmf
j

P


oleObject59.bin

image4.wmf
iL

R

Î

R


oleObject2.bin

image5.wmf
L

N


oleObject3.bin

image6.wmf
L

R


oleObject4.bin

image7.wmf
L

Î

L


oleObject5.bin

image8.wmf
{,,}

EdgeFogCloud

=

L


oleObject6.bin

image9.wmf
1,

L

in

=


oleObject7.bin

image10.wmf
L

n


oleObject8.bin

image11.wmf
L


oleObject9.bin

image12.wmf
im

RR

¹


oleObject10.bin

image13.wmf
,

iLmL

RR

ÎÎ

RR


oleObject11.bin

image14.wmf
im

¹


oleObject12.bin

image15.wmf
1,,1,

LL

inmn

==


oleObject13.bin

image16.wmf
,1,

j

TjJ

Î=

T


oleObject14.bin

image17.wmf
j

T


oleObject15.bin

image18.wmf
L

L

Î

=

U

L

NN


oleObject16.bin

image19.wmf
L

L

Î

=

U

L

RR


oleObject17.bin

image20.wmf
{,,}

EdgeFogCloud

=

L


oleObject18.bin

image21.wmf
j

T


oleObject19.bin

image22.wmf
L

¬


oleObject20.bin

oleObject21.bin

image23.wmf
L

Î

L


oleObject22.bin

oleObject23.bin

image24.wmf
L


oleObject24.bin

image25.wmf
i

N


oleObject25.bin

image26.wmf
L

N


oleObject26.bin

oleObject27.bin

image27.wmf
i

R


oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

image28.wmf
L

N


oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

oleObject38.bin

oleObject39.bin

image29.wmf
'

\{}

LLL

¬Î

L


oleObject40.bin

oleObject41.bin

image30.wmf
,1,

j

TjJ

Î=

T


oleObject42.bin

image1.png
. CLOUD

! 3| PosymHuii
e N ] o | wmo3

| FOG

, EDGE





image31.wmf
L

Î

L


oleObject43.bin

image32.wmf
{|1,}

k

jj

PpkK

==


oleObject44.bin

image33.wmf
k

j

p


oleObject45.bin

image34.wmf
k


oleObject46.bin

image35.wmf
j

T


oleObject47.bin

image2.png
Cloud-cucTema ynpaBniHHa

! !

Node Node

Fog-cucTeMa ynpaeniHHA

Fog-cucTeMa ynpaBniHHA

{

$ $

$

Node

Node Node

Node

Edge-cuctema ynpaBniHHA

@ Cloud MEL
B rog MEL
@ EdgevEL

“ [laHi Ta ynpasniHH:





image36.wmf
L


oleObject48.bin

oleObject49.bin

image37.wmf
(,)(,)

LjLj

fTLfPL

®


oleObject50.bin

image38.wmf
iL

N

Î

N


oleObject51.bin

image39.wmf
iL

R

Î

R


oleObject52.bin

image40.wmf
(,)

Rji

fTR


